13 March 1998
Technical Support Tech Note, No. 96
Page 3

[image: image1.wmf]
Number 96
Updated: March 27, 1998
March 13, 1998

Using ActiveX Controls in InTouch 7.0 by Steve Lewarne

Introduction

Wonderware® InTouch™ 7.0, released as part of the FactorySuite™ 2000, is actually an ActiveX container within the FactorySuite. This feature allows you to work directly with ActiveX controls in exactly the same manner as you would work with wizards in InTouch. These ActiveX controls are provided by Wonderware, Microsoft and other third-party Wonderware Partner companies (see the Partners section on the Wonderware corporate web site at www.wonderware.com).

Note For more general information on using ActiveX components in the FactorySuite, see the Wonderware white paper, “ActiveX Components and the FactorySuite”, under the Downloads section on the Wonderware corporate web site at www.wonderware.com.

While support for ActiveX containers in InTouch 7.0 is extremely powerful and allows you to integrate a wide variety of ActiveX controls into an HMI application, there are some restrictions that you should be aware of when selecting specific ActiveX controls for use in InTouch 7.0. This Tech Note will explain these restrictions as well as other considerations when using ActiveX controls in FactorySuite 2000.

Data Type Support

One issue that you should take into account when using ActiveX controls in InTouch 7.0 is which data types are supported by InTouch. InTouch 7.0 supports four basic data types, which are listed in the table below.

InTouch 7.0 Tag Type
Supported Data Type

Discrete
Boolean

Integer
32-bit Integer

Real
IEEE 32-bit Floating Point

Message
131 Character String

ActiveX controls communicate with the container application through Properties, Methods and Events. Each Property, Method or Event that is exposed by an ActiveX control must have parameters that match the data types specified in the above table. ActiveX Properties, Methods and Events that do not conform to the InTouch 7.0 data types will not be available for use within InTouch 7.0!
Thus, some of the data types that are not supported within InTouch 7.0 are Object, Variant, Pointer and Array. Many ActiveX controls that are designed for a specific environment (example, Microsoft® Visual Basic or Microsoft Visual C++), may need to these unsupported data types to pass undefined or complex data types between the underlying program and the ActiveX control itself. Since InTouch 7.0 does not know how to handle data types such as Variant or Object types, the ActiveX Properties, Methods or Events, which require parameters of this data type will not be available in the FactorySuite QuickScript environment.

If you need to use to use an ActiveX control that has data types other than the four that are supported by InTouch 7.0, you still have an option: An ActiveX control can be “wrapped” in a Microsoft Visual Basic 5.0 or Microsoft Visual C++ application to produce a new ActiveX control that is compliant with the four supported data types. If you have a good understanding of Microsoft Visual Basic 5.0 or Microsoft Visual C++, then you can create this “wrapper”.

Implementing an ActiveX Object

There are a number of ways that you can implement an ActiveX object in InTouch 7.0. An ActiveX object acts as a server to the ActiveX container, which acts as a client. You can implement ActiveX objects in two ways:

1. As an in-process server

Or

2. As an out-of-process server

Process Space and Marshaling

There are benefits and drawbacks to both approaches. To understand the differences between an in-process server and an out-of-process server, we must introduce the concept of process spaces. A process space is a section of memory that is allocated for a specific process (example, an application program or executable). Under Microsoft® Windows™ 95 and Windows NT, only the process to which it belongs and the operating system can access the process space. Under Windows 3.x and earlier, any process could access any memory location. This situation increased the risk of having a process access and corrupt the memory of another process, which resulted in a General Protection Fault (GPF) error.

While a process space eliminates the possibility of a process corrupting another process’s memory allocation, it does make it more difficult to share or move data between processes. The act of moving data from one process to another is called Marshaling. Fortunately, the Microsoft COM (Component Object Model) standard, on which ActiveX is built, supports Marshaling.

In-Process ActiveX Controls

In-process ActiveX objects are loaded into the process space of the container application. Since these objects reside in the container application’s process space, the data does not need to be marshaled between the container application and the ActiveX object. This results in a decrease in overhead and an increase in performance.

Thus, there are many advantages to implementing ActiveX objects as an in-process server. The primary advantage is that you can achieve excellent performance by having it located in the same process space as the container. Another advantage is that it can be used by any OLE automation client, such as a Microsoft Office application (example, Microsoft Word or Excel).

Out-Of-Process ActiveX Controls

Out-of-process ActiveX objects are loaded into a separate process space from the container application. Since there is no shared memory between these applications, data must be marshaled between the ActiveX object and the container. This marshaling drastically increases the overhead and it decreases the performance.

However, the advantage of implementing an out-of-process ActiveX object is that they allow objects to be used by both the client and the server as a standalone application. Also, by definition, an ActiveX server operates on a separate thread and it does not interfere with the client processing the data.

Using Active X Objects With Other Objects in InTouch 7.0

InTouch 7.0 supports ActiveX controls as an in-process server. This means that the ActiveX controls operate on the same thread with the other graphical objects in the InTouch application window. This allows you to have excellent communication performance between an ActiveX control and InTouch 7.0.

However, the disadvantage is that the ActiveX controls can “block” updates to the graphical objects in the same window. That is, if an ActiveX control requires a large amount of CPU time or it has slow network communication operations, it can degrade the performance of the other graphical objects and logic. Therefore, we recommend that you do not design or select ActiveX controls that are CPU-intensive or require slow network operations.

Modifying an Installed ActiveX Control

There are several factors to consider when you have installed an ActiveX control in your InTouch 7.0 application, but later find it necessary to modify the control.

Modifying the Control’s Code

If you are adding, changing or removing code which governs what the control does, then all you need to do is simply replace the existing .OCX file with the updated version.
Modifying the Control’s Interface
If you modify any of the interface elements of the control (that is, the Method names, number of arguments or argument types, Property names or types, or Event names or types—including Event parameters), then you follow the steps below to ensure that the references to the modified control in the InTouch application will remain valid.

Note Because of the large number of steps required to update a modified ActiveX control in an InTouch application, we strongly recommend that you finalize any changes to the control before you install and configure it in InTouch. The reason is that each new version of an ActiveX control will generate a new GUID (Globally Unique Identifier), which will cause InTouch’s OCX indexer to become out of sync should the control be updated after it has been installed.

Follow these steps if you modified an ActiveX control that has already been installed in an InTouch application:

1. Start up WindowMaker and open the InTouch application containing the modified ActiveX control.

2. If there are any references to the ActiveX control in the InTouch scripts, then temporarily copy the scripts to a text file by using a text editor, such as Microsoft Notepad.

Note Since On Shutdown and On Startup scripts do not support references to ActiveX controls, you do not need to remove any ActiveX control references from these two types of scripts. However, references to ActiveX controls may be included in ActiveX Event scripts, Data Change scripts, Application While Running scripts (except for On Startup and On Shutdown scripts), Window scripts, Condition scripts, Key scripts, and QuickFunctions.

ActiveX Event scripts are stored in *.OES files in your InTouch application directory (example, 00000001.OES). Though these are binary formatted files, you can open these files with a text editor, such as Notepad, and find out the Event name to which the control is attached by viewing the first line. You may need to scroll to the right to see the Event name.
3. Delete the scripts containing the references to the modified ActiveX control Event.

4. Delete the ActiveX control from the InTouch application by selecting Configure from the Special menu. Then select Wizard/ActiveX Installation from the dropdown menu. The Wizard/ActiveX installation dialog box will appear. Click the ActiveX Control installation tab, then highlight the control under the Installed ActiveX controls list. Click the Remove button, then the OK button.

5. Save the InTouch application and exit WindowMaker.

6. Copy the updated .OCX file and/or the .DLL files to the location where the original .OCX and/or .DLL files reside. (Unlike Wizard files: .WDO, .WDF and .DLL files, we do not recommend copying the ActiveX control files into the InTouch installation directory.)

7. Register the updated .OCX file and/or .DLL files by selecting Run from the Start menu and entering the following command:

Regsvr32 “<path>\<filename>”

Where <path> is the location of the ActiveX control file (example, C:\Winnt\System32) and <filename> is the name of the ActiveX control file (example, Mycontrol2.ocx).

8. Install the modified ActiveX control in the InTouch application by opening the application in WindowMaker. Select Configure from the Special menu, then select Wizard/ActiveX Installation. Click the ActiveX Control installation tab, then highlight the modified control under the Available ActiveX controls list. Click the Install button, then the OK button.

9. Go back to each window where you removed the instances of the original ActiveX control and drop in a new instance of the revised control. Then, recreate the scripts that were copied and removed in steps 2 and 3.

Other Considerations

Here are some other considerations and guidelines when using ActiveX controls in InTouch 7.0:

· InTouch 7.0 does not support ActiveX (OLE) Automation Servers. If you need to use these servers in InTouch 7.0, you will need to develop an ActiveX control that would abstract the automation server from InTouch 7.0.

· In InTouch 7.0, ActiveX controls are always on top. This means that when you display an ActiveX control in WindowViewer, the control will always be displayed on top of any other object that it overlaps.

· Many ActiveX controls can be relocated at runtime. These controls allow you to dynamically specify the screen’s x and y coordinates to define where the control will appear. InTouch 7.0 supports statically positioned ActiveX components only.

· ActiveX controls are only available when they are contained in an open window. If you close a window that contains an ActiveX control, it will eliminate an instance of the control. If there are references in any script to the instance that was eliminated, it will result in one or more InTouch runtime errors. If you have an ActiveX control that must be available at all times (for example, a control with no visual component but does calculations), then the control should be placed on an application window that is always open. This window could be opened off the screen (at x, y coordinates 2000, 2000, for instance), which will keep the instance of the control active at all times.

· When you develop and test an ActiveX control, make sure that you test various phases of the control development in the development environment or external utility. Compiling and re-compiling an ActiveX control can cause the InTouch 7.0 configuration to become out of sync with the control. To re-synchronize the control version, you may need to delete the control configurations. Thus, you should not develop an ActiveX control and application, which will be used simultaneously. Develop the control first, then deploy the completed control in an application. Also, you should always back up your applications before introducing a new or modified ActiveX control! See the previous section, “Modifying an Installed ActiveX Control.”

For more information on using InTouch 7.0 as an ActiveX container, see the InTouch 7.0 User’s Guide, which is available on-line on the FactorySuite product CD-ROM.

The Tech Note publication is published periodically by the Wonderware Technical Support group. Editors: Mari Fujii and Sabrina Haag; Director of Technical Support: Sheila Kester; Publisher, Wonderware Corporation, 100 Technology Drive, Irvine CA 92618. E-mail your publication questions or topic requests to techpubs@wonderware.com.

There is also technical information on the Wonderware software products on the Technical Services web page at http://www.wonderware.com/support/, the Wonderware Bulletin Board Service at (714) 727-0726, the Comprehensive Support Knowledge Base CD, and the WonderFax FaxBack® service at (714) 450-5050. Call Wonderware Technical Support at (714) 727-3299 for more information on the Technical Services web page, the BBS, the Comprehensive Support Knowledge Base CD or the WonderFax system.

Copyright 1998 Wonderware Corporation. All Rights Reserved. Wonderware is a registered trademark of the Wonderware Corporation in the United States of America and/or other countries. March 13, 1998 Number 96

Copyright 1998 Wonderware Corporation. All Rights Reserved.

Copyright 1998 Wonderware Corporation. All Rights Reserved.

