�

Number 74	June 23, 1997

�
Creating and Loading Initial Value Files for InControl

by Andrew Brodie

Wonderware® InControl™ symbols can be populated with initial values by entering information in the initial value field. However, this is not a very flexible method of populating symbols, especially if the initial values vary like set-points. A more flexible and effective solution is to assign the data to a structure, which is a user-defined data type, and then save the structure as a text file which can be read and manipulated by standard text editors, spreadsheets, and databases. The structure can then be recalled from the text file upon startup, after rebooting or while the system is running.

This Tech Note shows how to populate a structure, write a structure to disk, read the structure from disk, and populate symbols. Shown here are simple examples of how file I/O can be used to read and write text files with saving and restoring initial values as the application.

Note This Tech Note was designed for the purpose of clarity, not efficiency. Note that all of the file I/O could be placed in one SFC step using IF, WHILE, and CASE statements to help branch the processes.

The easiest way to read and write file input and output (I/O) in InControl is through Sequential Function Charts (SFCs). Steps in SFCs can contain structured text commands that allow for file I/O. This Tech Note contains two SFCs with two steps per SFC.

Figure 1 on the next page is an example of a “Save Initial Value” SFC.

�

Figure 1. Example of a “Save Initial Value” SFC

This SFC starts with a Boolean transition that will not allow execution to pass until the Boolean symbol OktoPopulateStructure is set to True. The PopulateStructure step contains assignment statements that populate a structure, or user-defined symbol. The next transition will not allow the initial values to be written until OktoSaveInitialValues is set to True. The WriteInitialValues step writes the populated structure to a new text file on a disk. Finally, there is a loop transition that will not return to the start of the SFC until OktoPopulateStructure and OktoSaveInitialValues are both False. Figure 2 is an example of a PopulateStructure step:

�

Figure 2. Example of a PopulateStructure Step

This is a very simple step that only uses one structured text command. Within the step, symbols (which could be attached to field I/O) are assigned to fields within a structure. The symbols must be of the same type as the fields within the structure. Figure 3 is an example of a WriteInitialValues step.

�

Figure 3. Example of a WriteInitialValues Step

This step uses various structured text file I/O commands. The NEWFILE command needs two parameters: a file control block (FCB) and a pointer to a text file. The FCB is a name that is generated by the programmer while the file pointer is a string symbol that is populated with the file name and path. In this example, FileHandle is the FCB and FilePath is the file pointer. The WRITEFILE command has two mandatory parameters: the FCB and the structure name. In this example, InitStruct is the structure name. WRITEFILE has various optional parameters that can be added to indicate the format for writing data to a text file (such as field separation, end of line characters, and so on). If the optional parameters are omitted from the WRITEFILE command, the fields of the structure are written to a text file with a space as a separator. Each execution of WRITEFILE results in a new line. The CLOSEFILE command has one parameter, the FCB. (For more information on these and other file I/O commands, see the InControl on-line help.) Figure 4 on the next page shows an example of the string symbol that contains the location of the initial value file.

�

Figure 4. Example of the String symbol Containing the Initial Value File Location

Figure 5 shows an example of a user-defined data type for the initialization values:

�

Figure 5. Example of a User-Defined Data Type for the Initialization Values

Figure 6 shows an example definition of an InitStruct symbol:

�

Figure 6. Example Definition of an InitStruct Symbol

Figure 7 shows an example of a restore initial value SFC:

�

Figure 7. Example of a Restore Initial Value SFC

This SFC starts with a Boolean transition that will not allow execution to pass until the Boolean symbol OktoReadValues is set to True. The ReadValues step reads an existing text file from disk and populates a structure. The next transition will not allow the initial values to be written until OktoRestoreValues is set to True. The RestoreValues step contains assignment statements that populate symbols from fields of a structure. Finally, there is a loop transition that will not return to the start of the SFC until OktoRestoreValues and OktoReadValues are both False. Figure 8 shows an example of the ReadValues step:

�

Figure 8. Example of the ReadValues Step

This step uses various structured text file I/O commands. The OPENFILE command needs two parameters, a FCB and a pointer to a text file. The FCB is a name generated by the programmer while the file pointer is a string symbol (that is populated with the file and path). In this example, FileHandle is the FCB and FilePath is the file pointer. The READFILE command has two mandatory parameters, the FCB and the structure name. In this example, RecovStruct is the structure name. READFILE has various optional parameters that can be added to indicate the format for reading data from a text file (such as field separation, end of line characters, etc.). If the optional parameters are omitted from the READFILE command, the data in the text file is considered as space delimited. Each execution of READFILE populates its target structure with one line of data. The CLOSEFILE command has one parameter, the FCB. (For more information on these and other file I/O commands, see the InControl on-line help.) Figure 9 on the next page shows an example of a RestoreValues step.

�

Figure 9. Example of a RestoreValues Step

This is a very simple step that only uses one structured text command. Within the step, fields of a structure (which were read from a text file) are assigned to symbols. The symbols must be of the same type as the fields within the structure.

The Technical Support Tech Note is published occasionally by the Wonderware Technical Support group. Editor: Mari Fujii; Director, Technical Support: Sheila Tyler Kester; Publisher, Wonderware Corporation, 100 Technology Drive, Irvine CA 92618.

There is also technical information on the Wonderware software products on the WonderTech Web site (URL is http://wondertech.wonderware.com), the WonderFax Fax Back system (phone is (714) 450-5050), Wonderware’s Bulletin Board Service (BBS) at (714) 727-0726 and the Wonderware Comprehensive Support Knowledge Base CD (KBCD). Call Wonderware Technical Support at (714) 727-3299 (or E-mail to support@wonderware.com) for more information.

Copyright 1997 Wonderware Corporation. All Rights Reserved. Wonderware is a registered trademark of the Wonderware Corporation in the United States of America and/or other countries.

June 23, 1997 Number 74

	23 June 1997	Technical Support Tech Note, No. 74	Page � PAGE �7�

Copyright 1997 Wonderware Corporation. All Rights Reserved.

Copyright 1997 Wonderware Corporation. All Rights Reserved.

