�

Number 51	April 3, 1997

�
Configuring InTrack WIP Lot Consumptions by Angie Tran

Introduction

Most Wonderware® InTrack™ material transactions occur at the sublot level. It is at this level that materials are moved or consumed along a specified route. As the materials traverse on one or more routes, they are transformed into more finished states of manufacturing until they become finished goods inventory.

In InTrack, “product” refers to the target product which are the primary finished goods produced along a route. “Material” refers to both the input material that is used to manufacture the target product and the output material which is often called “coproducts” or “by-products” of the target product.

To prepare for material consumption in your InTrack application, you would: 1) create all of the required materials; 2) define a bill of material that contains the inputs (consumable materials) which are used during the processing of your product; 3) attach the product to the route; and 4) assign the inputs to specific steps on a route. At this point you have material to consume at operation steps.

You can either use the WIP-Consume-Runtime dialog box to manually consume material as needed or use the InTrack OLE Sublot.Consume method to automatically consume material for an entire sublot. In order to successfully consume materials at an operation along a route, the following conditions must be met:

Materials must already be received into inventory;

The consuming sublot must be in process for the Start and Complete operations;

The consuming lot must not be on hold.

Consuming Unserialized WIP Lots

To consume material for an unserialized WIP lot, you can use a variety of Consume methods depending on the parameters which are passed as follows:

Consume Method 1

ReturnCode = %Sublot.Consume(%ConsumeItem);

This Consume method will consume material for an unserialized sublot. Material must be manufactured with a bill of material in order to be consumed. However, materials that come without a bill of material can also be consumed if the ForceConsumption property is set to TRUE in each object of the ConsumeItem class. Specifically, this method consumes a single lot inventory which is defined by setting the properties of the ConsumeItem class. These properties are: Sublot, PrimaryAmt.Quantity, ForceConsumption, and so on.

Consume Method 2

ReturnCode = %Sublot.Consume(%ConsumeItems);

This Consume method consumes a group of inventory lots that are populated from the ConsumeItem class. You can also pass the parameter %ConsumeItems in the ConsumeStdQty method.

Consume Method 3

ReturnCode = %Sublot.Consume(%ConsumableMaterial);

This Consume method consumes a primary or substitute material as defined in the %ConsumableMaterial class. The %ConsumableMaterial class is also used in the Assemble method.

Consume Method 4

ReturnCode = %Sublot.Consume(%ConsumableMaterials);

This Consume method consumes a group of materials that are populated through the %ConsumableMaterial class. The %ConsumableMaterials class is also used in the Assemble method.

Consume Method 5

ReturnCode = %Sublot.Consume(SerialNumber);

This Consume method consumes a serialized material with a specific Serial Number .

Consume Method 6

ReturnCode = %Sublot.Consume(%SerialNumbers);

This Consume method consumes more than one serialized material by a group of Serial Numbers .

ConsumeQty Method

ReturnCode = %Sublot.ConsumeQty(sublotKey, consumeQty);

This ConsumeQty method consumes a specified amount of a sublot for a particular material. The ConsumeQty method does not consider serial numbers or secondary quantities and it does not allow forced consumptions.

ConsumeStdQty Method

ReturnCode = %Sublot.ConsumeStdQty (sublotKey);

This ConsumeStdQty method consumes an expected quantity of a material, as defined in the Bill Of Materials in ModelMaker. The material to be consumed is specified through the SublotKey. Like the ConsumeQty method, the ConsumeStdQty method does not consider serial numbers or secondary quantities and it does not allow forced consumptions.

Consuming Serialized WIP Lots

The Assemble method will consume materials for a serialized WIP lot. Materials must be manufactured with a bill of material in order to be consumed. The Assemble method can consume multiple quantities of inventory materials, but the Assemble command must be called for each sublot that is consumed.

The parameters passed to the Assemble method are identical to the ones that are used in the Consume method for unserialized WIP lots. See the InTrack on-line documentation for detailed descriptions of these parameters.

To consume materials for serialized WIP lot, you can use the following Assemble methods:

Assemble Method 1

ReturnCode = %Sublot.Assemble(WIPSerialNumber, %ConsumableMaterial);

This Assemble method is used to consume a material for a WIP lot that is identified with a specific serial number.

Assemble Method 2

ReturnCode = %Sublot.Assemble(WIPSerialNumber, %ConsumableMaterials);

This Assemble method is used to consume a group of materials for a WIP lot that is identified with a specific serial number.

Assemble Method 3

ReturnCode = %Sublot.Assemble(WIPSerialNumber,�%ConsumeItem);

This Assemble method is used to consume a single lot inventory of a material for a WIP lot that is identified with a specific serial number.

Assemble Method 4

ReturnCode = %Sublot.Assemble(WIPSerialNumber, %ConsumeItems);

This Assemble method is used to consume a group of lot inventory items for a WIP lot that is identified with a specific serial number.

Assemble Method 5

ReturnCode = %Sublot.Assemble(WIPSerialNumber, serialNumbers);

This Assemble method is used to consume a serialized inventory for a serialized WIP lot.

Assemble Method 6

ReturnCode = %Sublot.Assemble(WIPSerialNumber, %SerialNumbers);

This Assemble method is used to consume a collection of serialized inventory for a serialized WIP lot.

Consuming Materials of a Selected WIP Lot from the WIP Selector

To illustrate the consumption concept, the following script can be used to automatically consume all materials for a selected unserialized WIP lot in a WIP selector, where the inventory is also unserialized. The script is designed to:

1)	Identify all of the consumable materials for the selected WIP lot.

2)	List all of the materials in the list box.

3)	Identify all available inventory lots for each material.

4)	Calculate the required quantity for each material.

For each lot inventory, check to see if sufficient inventory has been consumed. If enough quantity has been consumed, then the script will issue the message “Consume Trx is successfully executed !”. Otherwise, the script will generate the error: “Not enough ...material... to consume”.

Here is our example script:

{Create all required OLE Objects }

OLE_CreateObject(%Sublot , "InTrack.Sublot") ;

OLE_CreateObject(%StartedAmt , "InTrack.Amount") ;

OLE_CreateObject(%ConsumableMaterial , "InTrack.ConsumableMaterial") ;

OLE_CreateObject(%ConsumableMaterials , "InTrack.ConsumableMaterials") ;

OLE_CreateObject(%ConsumeItem , "InTrack.ConsumeItem") ;

OLE_CreateObject(%ConsumeItems , "InTrack.ConsumeItems") ;

OLE_CreateObject(%Database , "InTrack.Database") ;

OLE_CreateObject(%Selector , "InTrack.Selector") ;

returncode = %Selector.AttachTo("A WIP Selector");

errorMessage = " ";

{Set Sublot key to the item selected in the Selector}

%Sublot.SublotKey = %Selector.Selection ;

{ Populate %ConsumableMaterials }

returncode = %Sublot.GetConsumableMaterials(%ConsumableMaterials);

Consum_Count = %ConsumableMaterials.Count;

{ Go through materials one at a time}

FOR count = 1 TO Consum_Count

 %ConsumableMaterial = %ConsumableMaterials.Item(count);

 Consum_list = %ConsumableMaterial.Material;

 wcAddItem ("ListBox_1", Consum_list) ; {Add next

 material to the list box}

 { Populate %consumeItems class, setting Predicate:

 Sublot.RouteName = NONE to exclude all WIP lots from being

 considered }

 returncode = %Sublot.GetConsumeItems(Consum_list,

 %consumeItems,

 "RouteName = 'NONE'");

 RM_LotCount = %ConsumeItems.Count;

 Lot_Qty = 0 ;

{For the given material, determine the amount to be consumed and how much has already been consumed}

 returncode = %Sublot.GetConsumeQty(Consum_list, Cons_Qty ,

 Cons_lowerQty, Cons_stdQty, Cons_upperQty);

 { Calculate the Required quantity for this material }

 Required_RM_Qty = Cons_stdQty - Cons_Qty;

 {Loop through all available inventory for this material }

 FOR Lot_Count = 1 TO RM_LotCount

 %ConsumeItem = %ConsumeItems.Item(Lot_Count);

 Consum_Key = %ConsumeItem.Sublot;

 Lot_Qty = %ConsumeItem.PrimaryAmt.Quantity;

 IF Lot_Qty >= Required_RM_Qty THEN {Does this lot have more than is necessary}

 returncode = %Sublot.ConsumeQty(Consum_Key, Required_RM_Qty);

 Required_RM_Qty = 0;

 EXIT FOR; {Consumption for this material is complete}

 ELSE { Not enough in this lot so consume it and recalc amount still needed }

 returncode = %Sublot.ConsumeQty(Consum_Key, Lot_Qty);

 Required_RM_Qty = Required_RM_Qty - Lot_Qty;

 ENDIF;

 NEXT; {Next Lot }

 IF Required_RM_Qty > 0 THEN

 errorMessage = "Not enough " + Consum_list + " to consume";

 ELSE

 errorMessage = "Consume Trx is successfully executed for " + Consum_list;

 ENDIF;

 LogMessage(errorMessage);

 NEXT; {Next Material }

You can also build in a transaction control by grouping all consume-related transactions into a transaction set using:

%Database.BeginTrans();

<...Consume transactions here....>

%Database.CommitTrans();

After BeginTrans is called, all subsequent operations will not be committed to the database until CommitTrans is called. If there are any errors (such as not enough material), you can undo all the methods committed since the last CommitTrans by calling:

%Database.RollbackTrans();

You can modify the above example script to use serial numbers by changing the consumption function to one of those that is listed earlier in this Tech Note. To see a list of all serial numbers for a selected WIP, see the article “Serialization in InTrack 3.0” on the Comprehensive Support Knowledge Base CD which has an example script.

The Tech Note publication is published periodically by the Wonderware Technical Support group. Editors: Mari Fujii and Sabrina Haag; Technical Publications Coordinator: Sabrina Haag; Director of Technical Support: Sheila S. Kester; Publisher, Wonderware Corporation, 100 Technology Drive, Irvine CA 92618. E-mail your questions or requests to techpubs@wonderware.com.

There is also technical information on the Wonderware software products on the WonderTech Web site at http://wondertech.wonderware.com, the Wonderware Bulletin Board Service at (714) 727-0726, the Wonderware CompuServe forum (GO WONDER), the Comprehensive Support Knowledge Base CD, and the WonderFax FaxBack® service at (714) 450-5050. Call Wonderware Technical Support at (714) 727-3299 for more information on the WonderTech Web site, the BBS, the Wonderware CompuServe forum, the Comprehensive Support Knowledge Base CD or the WonderFax system.

Copyright 1997 Wonderware Corporation. All Rights Reserved. Wonderware is a registered trademark of the Wonderware Corporation in the United States of America and/or other countries.

April 3, 1997 Number 51

	3 April 1997	Technical Support Tech Note, No. 51	Page � PAGE �7�

Copyright 1997 Wonderware Corporation. All Rights Reserved.

Copyright 1997 Wonderware Corporation. All Rights Reserved.

