Analog Snapshot Substitute for

Industrial SQL Server

By:Bryan Plaster,

Standard Automation and Control, LLC.

The event system in Industrial SQL Server is very powerful, but unless you have a super machine, you might miss some high resolution events, because it is not made for that. One example is the Snapshot event. This event takes a snapshot of certain specified tags every time an event happens. This works fine for events that occur rarely, like once an hour or day, etc., but it is not made for taking snapshots at high resolutions. Point one, you are collecting data double, once in the snapshot table, and once in the Data blocks. Point Two, Each sample in the snapshot table takes about 26 bytes (normal SQL Server storage) as opposed to each sample in the data blocks taking about 5 bytes. That is why you purchased Industrial SQL Server - to collect data once, compress it, and use it throughout the enterprise.

This tech note will describe how to collect the fact that an event happened, then later look at your data only at the times when that event occurred. In effect, a snapshot query. Here is how you do it.

Step 1. Define your points. In our example, we used tags called Databuffer1 – Databuffer5. Databuffer1 is the trigger for our event to take a snapshot. These are the tags that we want to take a snapshot of based on an event that happens.

Step 2. Define your event.

[image: image1.png]
Click on File/New in INSQL Configure

[image: image2.png]
This tagname is the actual event tagname. This is what we will refer to when we are looking for events.

[image: image3.png]
Make sure the Logged check box is checked.

[image: image4.png]
In this example, when databuffer1 (the analog tag) is equal to 0, then an event is logged to say that the event happened.

[image: image5.png]
But no action takes place. It is just logged that it happened.

Step 4: We will make a temporary table to store our queried data.

First go into Enterprise manager and make sure that the database can handle data being put into from external sources

[image: image6.png]
[image: image7.png]
Make sure that select into / bulk copy is checked for the runtime database.

Step 3: Now let’s extract the data based on when the event happened. This statement will drop the old temporary table that we were using, select from our history the 5 tags that we want.

Here is the statement that you can paste into an ISQL/Window to create the new table.

Or you can run it as a regular SQL Event action in Insql Configure.

/* */

/* This drops the old temporary table that we are using */

Drop table wwadmin.eventquery

go

/* this sets the resolution to 1 sec so that it will mesh */

/* with the event data when the tables are joined */

ww_setresolution 1000

/* this inserts the historical data from the certain amount of time*/

/* into the temporary table eventquery */

select datetime, databuffer1, databuffer2, databuffer3,

databuffer4, databuffer5 into eventquery

from analogwidehistory

where datetime > 'May 11 1998 3:10 PM'

and datetime < 'May 11 1998 3:15 PM'

/* don’t make the time span to great, because your new table might be to BIG! */

now that we have 1 second resolution data in the new table, we can link it to our events that we have been logging.

/* now we will join our new table with the eventhistory table */

/* to only see the databuffer data when our event happened. */

SELECT eventquery.DateTime, eventquery.databuffer1, eventquery.databuffer2,

eventquery.databuffer3, eventquery.databuffer4,

eventquery.databuffer5, EventHistory.TagName

FROM Runtime.dbo.EventHistory EventHistory,

Runtime.wwAdmin.eventquery eventquery

WHERE EventHistory.DetectDateTime = eventquery.DateTime

AND ((EventHistory.TagName='databuffer_happened'))

/* remember that databuffer _appened was the name of our event? */

/* and we join the two datetime so that we only see that data when they are */

/* equal (ie when an event happened)

Step 4: you will get an output like this. Just copy it out (control C) and paste it into excel, or automate it with the Bulk Copy Process (look it up in the manual – SQL books online)

[image: image8.png]
Tip 1:

Another way to do this is with xp_analogwidehistory. This is used for multiple tags as well. You can run the whole thing in a stored procedure. (You cannot with the above method). My new temporary table is called “eventsnapshot” instead of “eventquery”

First, make the table structure
Select datetime, databuffer2, databuffer3 into eventsnapshot from analogwidehistory where datetime > 'May 11 1998 3:10 PM'

and datetime < 'May 11 1998 3:15 PM'

/* this creates the table structure. I hard coded the two tagnames in here*/

delete from eventsnapshot

/*this deletes the data */

Then create the stored procedure

if exists (select * from sysobjects where id = object_id('dbo.event') and sysstat & 0xf = 4)

drop procedure dbo.event

GO

CREATE PROCEDURE event (@startdate varchar(18),

@enddate varchar(18))

AS

delete runtime.wwadmin.eventsnapshot

/* Clears out the old data */

insert into runtime.wwadmin.eventsnapshot

exec master..xp_AnalogWideHistory @startdate,

@enddate,databuffer2, databuffer3

GO

/*Use the same two tagnames here defined earlier */

GRANT EXECUTE ON dbo.event TO public

GO

GRANT EXECUTE ON dbo.event TO wwAdministrators

GO

GRANT EXECUTE ON dbo.event TO wwAdmin

GO

Run it like this from crystal reports or ISQL/w – give it the dates that you want

exec runtime..event 'Jun 3 1998 4:35PM', 'Jun 3 1998 4:50PM'

GO

/* Execute the stored procedure with the date parameters */

SELECT EventHistory.DetectDateTime, eventsnapshot.databuffer2, eventsnapshot.databuffer3

FROM Runtime.dbo.EventHistory EventHistory, Runtime.wwAdmin.eventsnapshot eventsnapshot

WHERE eventsnapshot.DateTime = EventHistory.DetectDateTime AND ((EventHistory.TagName='databuffer_happened'))

/* Compare against the Event history table –my event is called databuffer_happened- */

/* and show only the data at the times that the event happened - Thus Snapshot! */

Tip 2:

Another way to do this is with xp_analoghistory. Mainly used for just One tag at a time. You can run the whole thing in a stored procedure.

/****** Object: Table wwAdmin.eventsnapshot Script Date: 6/3/98 5:54:42 PM ******/

if exists (select * from sysobjects where id = object_id('wwAdmin.eventsnapshot') and sysstat & 0xf = 3)

drop table wwAdmin.eventsnapshot

GO

/****** Object: Table wwAdmin.eventsnapshot Script Date: 6/3/98 5:54:42 PM ******/

CREATE TABLE wwAdmin.eventsnapshot (

DateTime datetime NOT NULL ,

TagName varchar (33) NULL ,

Value real NULL ,

Quality tinyint NOT NULL ,

QualityDetail int NULL ,

wwTagKey int NOT NULL

)

GO

declare @startdate varchar(30)

declare @enddate varchar(30)

declare @tag1 varchar(30)

select @startdate = 'Jun 3 1998 3:00PM'

select @enddate = 'Jun 3 1998 3:15PM'

select @tag1 = 'sx_0051_teid_code_mi'

insert into eventsnapshot

exec master..xp_AnalogHistory @startdate,

@enddate,500,@tag1

SELECT EventHistory.DetectDateTime, eventsnapshot.TagName, eventsnapshot.Value

FROM Runtime.dbo.EventHistory EventHistory, Runtime.wwAdmin.eventsnapshot eventsnapshot

WHERE EventHistory.DetectDateTime = eventsnapshot.DateTime AND ((EventHistory.TagName='stac'))

